A

ि. 6 ऑगस्ट, 2017

RO9

प्रश्नपुस्तिका क्रमांक

प्रश्नपुस्तिका

BOOKLET NO.

यंत्र अभियांत्रिकी स्वयंचल अभियांत्रिकी/

एकूण प्रश्न : 150

वेळ : $1\frac{1}{2}$ (दीड) तास

यंत्र अभियांत्रिकी/स्वयंचल अभियांत्रिकी

एकूण गुण : 300

सूचना

(1) <u>उमेदवारांनी एकूण 150 प्रश्न सोडवावयाचे आहेत.</u> उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉल्प्येनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा.**
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करावा. तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉल्प्येन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपित्रकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचूक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

: विशेष सूचना :

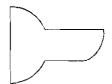
सदर प्रश्नपत्रिका विभाग - 'अ', 'ब' आणि 'क' विभागांमध्ये विभागण्यात आली आहे. त्यापैकी 'विभाग - अ - Mechanical Engineering-Automobile Engineering' मधील प्रश्न (प्र.क्र. 1-120) हे अनिवार्य आहेत. तर 'विभाग - ब - Mechanical Engineering' (प्र.क्र. 121-150) किंवा 'विभाग - क - Automobile Engineering' (प्र.क्र. 151-180) यापैकी एकाच विभागतील प्रश्न सोडविणे बंधनकारक आहे. याची कृपया उमेदवारांनी नोंद घ्यावी.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरिवणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षांच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा


पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

विभाग - 'अ'

		zero	(2)	minimum	(3)	hat axis at which maximum	(4)	infinite
2.	Momen	nt of inertia	of quart	er circle of rad	ius 'r' a	bout 'x' axis pas	sing tl	hrough centroid
		$\chi = 0.055 \text{ r}^4$	(2)	$I_X = 0.11 \text{ r}^4$	(3)	$I_{\chi} = 0.4 \text{ r}^4$	(4)	None of these
3.	pressu		s the ch	ange in length		and thickness 't' nade up of mater		
	(1)	$\delta L = \frac{PdL}{2tE} \left(\frac{1}{2} \right)$	$\left(\frac{1}{2} - \mu\right)$	(2) δL =	$= \frac{PdL}{2tE} (1 - \mu)$		
	(3)	$\delta L = \frac{PdL}{2tE} \ (1$	- 2μ)	(4) Non	e of these		
4.	Angle	between maj	or princ	ipal plane and	minor p	orincipal plane fo	r strai	ned body is :
	_	15°	(2)	30°	(3)	60°	(4)	90°
5.	wide a	•	iick, the	circular arc of ra		meters. If the placed will be:	late sec	ction be 120 mm
	•		,,					
	(1) 4	100 N/mm ² 100 N/mm ²	, ,	·		N/mm² N/mm²		
<u> </u>	(1) 4 (3) 1 The ra at both	400 N/mm ² 100 N/mm ² tio of critical	load of	columns of san) 150 ne dime			ial. One is fixed
6. 7.	(1) 4 (3) 1 The ra at both (1) Mome and di	100 N/mm^2 100 N/mm^2 tio of critical ends and of $\sqrt{2}$ ent of inertial	load of her is fi (2) of hollo	columns of san xed at one end 2 w rectangular s	ne dimerand hir (3)	N/mm ² nsions and same aged at other end	(4) th 'D'	4 and breadth 'B'
	(1) 4 (3) 1 The ra at both (1) Mome and di through	100 N/mm^2 100 N/mm^2 tio of critical mends and of $\sqrt{2}$ ant of inertial mensions of inertial sections.	load of ther is fi (2) of hollo nner rec	columns of san xed at one end 2 w rectangular s	ne dime and hir (3) section l	N/mm ² nsions and same aged at other end 0.5 naving outer dep	th 'D'	4 and breadth 'B' ntal axis passing
	(1) 4 (3) 1 The ra at both (1) Mome and di through (1)	100 N/mm^2 100 N/mm^2 100 N/mm^2 100 of critical $100 of cri$	load of her is fi (2) of hollo nner rec :	columns of san xed at one end 2 w rectangular stangle are dept	ne dimerand hir (3) section land hir d'and	nsions and same aged at other end 0.5 aving outer dep width 'b' about?	(4) th 'D' horizo (4)	and breadth 'B' ntal axis passing $\frac{BD^2 - bd^2}{12}$

- 9. The shear force diagram for a simply supported beam carrying a uniformly distributed toad of ω per unit length, consists of :
 - one right angled triangle (1)
- (2)two right angled triangles
- one equilateral triangle (3)
- (4)two equilateral triangles
- **10**. The stress at which the extension of the material takes place considerably as compared to the increase in load, is called:
 - elastic limit
- (2)yield point
- ultimate point
- (4)breaking point
- 11. The shear stress distribution over a beam cross-section is shown in figure. The beam is of:

- (1)equal flange I-section
- nequal flange I-section (2)
- circular cross-section (3)
- T section
- The relation between Young's modulus (E), shear modulus (G) & bulk modulus (K) is 12. given by:

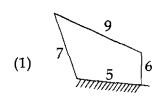
(1)
$$E = \frac{3 \text{ KG}}{3 \text{ K} + 6}$$

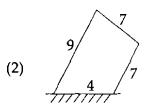
(2)
$$E = \frac{6 \text{ KG}}{3 \text{ K} + \text{ G}}$$

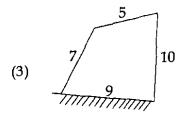
(3)
$$E = \frac{9 \text{ KG}}{3 \text{ K} + \text{ G}}$$

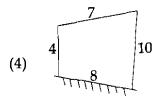
$$E = \frac{3 \text{ KG}}{3 \text{ K} + \text{ G}}$$
 (2) $E = \frac{6 \text{ KG}}{3 \text{ K} + \text{ G}}$ (3) $E = \frac{9 \text{ KG}}{3 \text{ K} + \text{ G}}$ (4) $E = \frac{12 \text{ KG}}{3 \text{ K} + \text{ G}}$

- What is the shape of shearing stress distribution across a rectangular cross-section beam? **13**.
 - (1) Triangular
 - (2)Parabolic only
 - (3)Rectangular only
 - A combination of rectangular and parabolic shape (4)
- 14. A beam has triangular cross-section having base b & altitude h. If the section of beam is subjected to a shear force F, the shear stress at the level of neutral axis in the cross-section is given by:
 - 4F (1)


- **15.** What is the ratio of maximum shear stress to average shear stress in a beam of circular section?
 - 1.5 (1)
- (2)2
- (3) 1.33
- (4)2.5


16.		ect such as slight eccentricity, rations can be corrected by:	, a wavy s	urface, or a slight taper caused by previous							
	(1)	Grinding operation	(2)	Lapping operation							
	(3)	Honing operation	(4)	Turning operation							
<u> </u>	Chip	oping of tool may occur due t	o :								
	(a)	tool material is too brittle									
	(b)	As a result of crack that is a	lready in t	he tool							
	(c)	Excessive static loading of the	he tool								
	(d)	Weak design of tool, such as	s high posi	tive rake angle							
	Ans	wer Options :									
	(1)										
	(3)	Only (a) and (c)	(4)	All (a), (b), (c) and (d)							
18.	'Mic	'Microstoning' is the following type of operation:									
	(1)	Roughing	(2)	Finishing							
	(3)	Super-finishing	(4)	Polishing							
 19.	In o	In orthogonal cutting system the cutting edge is:									
	(1) In line with direction of tool travel										
	(2) Perpendicular to direction of tool travel										
	(3)	•									
	(4)	• •									
20.	Colour code for part to be machined for wooden patterns is represented by following colour:										
	(1)	Red or orange	(2)	Yellow							
	(3)	Black on core prints	(4)	Green							
21.		The extrusion process used in manufacturing short length components like tooth paste tubes, gun shells etc. is :									
	(1)	Indirect extrusion	(2)	Direct extrusion							
	(3)	Hydrostatic extrusion	(4)	Continuous extrusion							
<u></u>	'Qu	alified tooling' and 'preset too	oling', these	e two basic types of tooling are used in :							
	(1)	Conventional lathe machine	es	,,							
	(2)										
	(3)	• •									
	(4)	. ,									


23.	As per Hume-Rothery rules of solid solubility, the difference between atomic sizes of solute and solvent should be less than :										
	(1)	20%	(2)	25%		(3)	15%	(4)	28%		
24.	The	broaching ope	ration ir	which th	ie work	m ove	s past the sta	itionary to	ol is called :		
	(1)	Pull broachir			(2)		h broaching	·			
	(3)	Surface broa	ching		(4)	Con	tinuous broa	ching			
25.	In d	own or climb r	 nilling :								
	(a)	direction of r	otation o	of cutter is	s opposi	ite to	work feed dii	rection			
	(b)	direction of r	otation o	of cutter c	oincide	s with	the direction	of work	feed		
	(c)	chip thicknes	s is min	imum (ze:	ro) at th	ie star	t and maxim	um at the	end of cut		
	(d)	chip thicknes	ss is max	imum at t	the star	t and	minimum (ze	ero) at the	end of cut		
	Ans	wer Options :	:								
	(1)	(a) and (c) or	nly		(2)	(b) a	and (c) only				
	(3)	(a) and (d) or	nly		(4)	(b) a	and (d) only				
26.	Lase	Laser beam machining process is used for machining :									
	(1)	Very thick m	aterials		(2)	Thir	n materials				
	(3)	Heavy Section	ons		(4)	The	re is no such	limitation	S		
27.	In the broaching operation :										
	(1)	Production ca	- apacity i	s high bed	cause cu	ıtting	speed is high	1			
	(2)	Production ca	apacity i	s low beca	ause cu	tting s	peed is low				
	(3)	Production ca	apacity i	s high the	ough cu	tting s	peed is low				
	(4)	None of the a	above								
28.	Back	gears are use	d in cent	πe lathe fo	or:						
	(a)	effective redu	ıction in	spindle s	peed						
	(b)	increase in sp	oindle sp	eeds							
	(c)	facilitating w	ider ran	ge of spee	eds						
	(d)	spare purpos	e								
	Ans	swer Options :									
	(1)	(a) and (b)	(2)	(a) and	(c)	(3)	(b) and (c)	(4)	(a) and (d)		
29.	The	abrasives used	in super	r finishing	g is a:						
	(1)	Coated abras	*	C.	(2)	Bone	ded abrasive				
	(3)	Both (1) and	(2)		(4)	Mon	e of the abov				


30.	The chip thickness ratio 'r' in orthogonal metal cutting operation is always:										
	(1)	Greater than unity		(2)	Less	than unity					
	(3)	Equal to unity		(4)	Equa	al to depth of c	cut				
31.		achine tool having a c					he progr	am and control			
	(1)	Numerical Control M	lachine Tool	l							
	(2)	Computer Numerical	Control Ma	achine	e Tool						
	(3)	Direct Numerical Cor	ntrol Machii	ne To	ol						
	(4)	None of the above									
32.	In d	In drawing process tractix curve is a special profile in which radius of curvature :									
	(1)	Continuously increas	_	(2)							
	(3)	Remains same		(4)	Non	e of the above					
 33.		ch of the following is c	hip removal	l proc	ess ?		<u>-</u>				
	(1)	Rolling (2)	Extruding	-	(3)	Die casting	(4)	Broaching			
34.	The	process of chamfering	the entrance	of a	drille	d hole is know	n as :				
	(1)	Counter boring		(2)	Cou	nter sinking					
	(3)	Counter fillet		(4)	Trep	anning					
35.	For	thread cutting and dril	ling cycles f	ollow	ing co	des are used :					
	(1)	G - 33 and G - 83 resp	pectively	(2)	G - 8	33 and G - 33 r	espectiv	ely			
	(3)	G - 81 and G - 83 resp	pectively	(4)	G - 3	33 and G - 81 r	espectiv	ely			
 36.		effort of a governor is a	defined as th	ne for	ce reqi	uired to be app	lied for	what percentage			
	(1)	1 percent (2)	5 percent		(3)	10 percent	(4)	any percent			
 37.	The	direction of Corioili's o	component c	of acc	——— elerati	on is obtained	by :				
	(1)	Rotating V (Velocity in the same direction						about its origin			
	(2)	Rotating V (Velocity of the same direction as						oout its origin in			
	(3)	Rotating V (Velocity of the opposite direction									
	(4)	Rotating V (Velocity in the same direction									

In the figures given below, the number indicates length of the link. 38. Which one of the following mechanisms is crank-rocker mechanism?

Match List I and II and select correct answer from the options given : 39.

List - I

List - II

- (a) Hunting
- One radius of rotation for each speed (i)
- Isochronism (b)
- Too sensitive (ii)
- (c) Stability
- Mean force exerted at sleeve during change of speed (iii)
- (d) **Effort**
- Constant equilibrium speed for all radii of rotation (iv)

Answer Options:

(a)

(iii)

- (c)
- (b) (d) (i) (iii)
- (1)(ii)

(2)

- (iv) (i)
- (iv) (ii)
- (3)(ii)
- (i) (iv)
- (4)(i)
- (ii)
- (iv) (iii)

(iii)

- Pendulum pump is an inversion of: **4**0.
 - Four bar chain **(1)**

- Single slider crank chain (2)
- (3)Double slider crank chain
- None of the above **(4)**
- In automobiles, Hooke's joint is used between which of the following? 41.
 - Clutch and gear box (1)
- Gear box and differential (2)
- Differential and wheels (3)
- Fly wheel and clutch (4)

- 42. The product of circular pitch and diametral pitch is equal to:
 - (1) $P_c \cdot P_d = \pi$

(2) $P_c \cdot P_d = 2\pi$

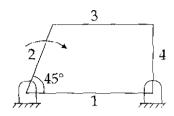
(3) $P_c \cdot P_d = \frac{\pi}{2}$

- $(4) \qquad P_c \cdot P_d = 1$
- 43. In a pantograph, all the pairs are:
 - (1) Turning pairs

(2) Sliding pairs

(3) Spherical pairs

- (4) Screw pairs
- 44. In a kinematic chain, a quarternary joint is equivalent to:
 - (1) one binary joint


- (2) two binary joints
- (3) three binary joints
- (4) four binary joints
- 45. The frictional torque transmitted in a conical pivot bearing, considering uniform wear is:
 - (1) $\frac{1}{2} \cdot \mu \cdot W \cdot \mathbf{r} \cdot \operatorname{cosec} \alpha$
- (2) $\frac{2}{3} \cdot \mu \cdot W \cdot r \cdot \csc \alpha$
- (3) $\frac{3}{4} \cdot \mu \cdot W \cdot r \cdot \csc \alpha$
- (4) μ· W· r· cosec α
- 46. The condition for correct steering for a Davis steering gear, where
 - α = Angle of inclination of the links to the vertical
 - b = Wheel base
 - c = Distance between the pivots of the front axle is:
 - (1) $\sin \alpha = b/c$

(2) $\cos \alpha = c/b$

(3) $\tan \alpha = c/2b$

- (4) $\cot \alpha = c/2b$
- **47**. For a follower moving with cycloidal motion, the velocity of the follower is maximum at the :
 - (1) Beginning of the outstroke
- (2) End of the outstroke
- (3) Middle of the outstroke
- (4) None of the above
- 48. The planes of spin, precession and applied gyroscopic couple are:
 - (1) the same one plane
 - (2) two planes perpendicular to one another
 - (3) three planes perpendicular to one another
 - (4) none of the above

49. The magnitude of absolute angular velocity of link 2 is 10 rad/s while that of link 3 is 6 rad/s, what is the angular velocity of link 3 relative to 2?

- (1) 6 rad/s
- (2) 16 rad/s
- (3) 4 rad/s
- (4) 14 rad/s
- 50. In a gear train where the axes of gears have motion are called:
 - (1) Reverted gear trains
- (2) Epicyclic gear trains
- (3) Compound gear trains
- (4) Bevel wheel gear trains
- **51.** With increase of governor speed:
 - (1) radius of rotation and height of governor increases
 - (2) radius of rotation and height of governor decreases
 - (3) radius of rotation decreases but height of governor increases
 - (4) radius of rotation increases but height of governor decreases
- 52. The instantaneous centre of a slider moving on a curved surface lies at :
 - (1) infinity
 - (2) their point of contact
 - (3) the centre of curvature of curved surface
 - (4) the pin point
- 53. Axial thrust has significant effect in case of which of the following gear?
 - (1) Spur gear

- (2) Helical gear
- (3) Double helical gear
- (4) Herringbone gear
- 54. The ratio of frictional torque produced for uniform wear to that for uniform pressure is :
 - (1) 1
- $(2) \quad 2/3$
- (3) 4/3
- $(4) \quad 3/4$
- **55.** The following profiles of gears satisfy the law of gearing:
 - (1) conjugate profiles of mating teeth
 - (2) involute profiles of mating teeth
 - (3) cycloidal profiles of mating teeth
 - (4) all of the above

	ace tension has the units of : Force per unit area Force per unit volume	(2) (4)	Force per unit length None of the above						
(3)	equal to 5 mm (4)	grea	ater than 6 mm						
(1)	less than 3 mm (2)		e than 3 mm but less than 5 mm						
	rder to prevent the capillary action fron diameter of the glass tube should be _								
(4) none of the above									
(3)	is equal to the reciprocal of the sum o	t loss c	of head in each pipe						
(2)	is same as in each pipe	<i>c</i> 1							
(1)	is equal to the sum of the loss of head	in eac	h pipe						
When the pipes are connected in parallel, the total loss of head :									
(1)	$C = \sqrt{\frac{f'}{\rho g}} \qquad (2) \qquad C = \sqrt{\frac{\rho g}{f'}}$	(3)	$C = \sqrt{\frac{\rho}{f'}} \qquad (4) \qquad C = \sqrt{\frac{f'}{\rho}}$						
	is frictional resistance per unit wetted a Chezy's constant is given by :	area pe	er unit velocity and ρ is density of fluid						
(3)	ratio of viscous force to elastic force	(4)	ratio of inertia force to viscous force						
(1)	ratio of inertia force to gravity force	(2)	ratio of viscous force to gravity force						
Reyr	nold's number is defined as the :								
(4) ———	Low density and low viscosity fluid.								
(3)	Low velocity and high viscosity fluid.								
(2) High velocity and high viscosity fluid.									
(1)	High velocity and high density fluid.								
For laminar flow through a round pipe, which statement is correct ?									
(3)	Both steady and unsteady Flow	(4)	None of above						
(1)	Steady Flow	(2)	Unsteady Flow						
Bern	oulli's equation is applicable to :								
(3)	0.99 times the free stream velocity	(4)	None of the above						
(1)	Free stream velocity	(2)	1.2 times the free stream velocity						
(1) (3) Be	rn	Free stream velocity 0.99 times the free stream velocity rnoulli's equation is applicable to:	0.99 times the free stream velocity (4) rnoulli's equation is applicable to :						

64.	Diffe	erential manometers	are used for	: measu	ring :							
b 4.	(1)	Velocity at a point i	in a fluid									
	(2)	(2) Pressure at a point in a fluid										
	(3)	Difference of pressu	ure between	two po	oints							
	(4)	None of the above		_								
65.	Whe	en a liquid from a tar	nk flows thr	ough a	tap, t	hen total ene	rgy will _	·				
	(1)	Increase gradually		•	-	rease suddeni						
	(3)	Remain constant		(4)	Dec:	rease slowly						
66.		rcular opening of 'd' neter. Calculate the f						•				
	(1)	$\rho g \frac{\pi}{4} d^2 \tag{2}$) $3\rho g \frac{\pi}{4} d^2$	2	(3)	$2\rho g\pi d^2$	(4)	$\rho g \pi d^2$				
 67.	Mac	h Number is defined	as the ratio	of :								
	(1)	Inertia force to visce	ous force		(2)	Inertia force	to elastic	force				
	(3)	Viscous force to sur	rface tensior	n force	(4)	Viscous for	ce to elasti	ic force				
 68.		at is the dynamic visc	cosity of liqu	uid hav	ing ki	inematic visco	osity 6 sto	kes and spec	ific			
	(1)	6 poise (2)) 12 poise		(3)	18 poise	(4)	14 poise				
69.	If laminar flow of fluid having viscosity '\mu' is flowing through a pipe of diameter 'D'											
	press	sure gradient in pipe	flow is $-\frac{\partial I}{\partial z}$	$\frac{P}{x}$. What	at is tl	he average ve	locity of fl	low?				
	(1)	$V = \frac{1}{32\mu} \left(-\frac{\partial P}{\partial x} \right) D^2$		(2)	V ==	$\frac{1}{8\mu} \left(-\frac{\partial P}{\partial x} \right) D^2$						
	(3)	$V = \frac{1}{16\mu} \left(-\frac{\partial P}{\partial x} \right) D^2$		(4)	V=	$\frac{1}{4\mu} \left(-\frac{\partial \mathbf{P}}{\partial x} \right) \mathbf{D}^2$						
70.	The	velocity distribution	in laminar f	low thr	augh	a pipe follow	s the law	;				
	(1)	Parabolic law		(2)	Loga	arithmic law						
	(3)	Linear law		(4)	Exp	onential law						
71.	The range of coefficient of discharge for flow nezzle is											
	(1)	0.6 to 0.65 (2)) 0.95 to 0).98	(3)	0.5 t e 0.6	(4)	0.7 to 0.9				

72 .					re is heat input/output or shaft work output/ingassage problems?					ut
	(1)	Bernoulli's equ		1	(2)		r's equation			
	(3)	Steady flow en		quation	(4)		ace equation			
73.	Whi	ch of the follow	ing forc	es are cons	iderec	l in Re	eynold's equa	tion of mo	otica.?	
	(1)	Pressure force	, gravity	force, visc	ous fo	orce ar	nd force due t	to compre	ssibility.	
	(2)	Pressure force	, gravit	y force, visc	ous fo	orce a	nd force due	to surface	tension.	
	(3)	Pressure force	, gravity	y force, visc	cous fe	orce a	nd force due	to turbula	nce.	
	(4)	Pressure force	and gr	avity force.						
74 .		ch of the follow	ving qu	antity insid	le the	drop	lets or jet is l	higher du	e to the surfa	.ce
	(1)	Temperature			(2)	Pres	sure			
	(3)	Viscosity			(4)	Spec	cific Vol um e			
75.	Stok	e is the unit of :								
	(1)	Surface tensio	n		(2)	Visc	osity			
	(3)	Kinematic Vis	cosity		(4)	Non	e of the above	e		
76.		fraction of the ormance of a he					o net work o	utput is a	measure of t	 he
	(1)	mechanical ef	ficiency		(2)	volu	metric efficie	ncy		
	(3)	thermal efficie	ency		(4)	fuel	ratio			
77.	In air standard assumptions, all the processes that make up the cycle are internally									
	(1)	reversible	(2)	irreversibl	le	(3)	heated	(4)	cooled	
78.	as n	the steady flow lozzle or a pipe	section	the work	term i	is	•		`	
	(1)	Zero	(2)	Maximun	n 	(3)	Average ——	(4)	None of the	se
79.		yclic heat engino heat rejected pe			k per	cycle.	If the efficien	ncy of hea	t engine is 75	%,
	(1)	16 kJ	(2)	33 kJ		(3)	37 kJ	(4)	60 kJ	
80.		volume flow range though the mainuch less that equal to	ass flow			gh the muc		is constan		et,

81.	Reversed Carnot cycle comprises :											
	(1)	Two isentropic processes and tw	vo adia	abatic	processes.							
	(2) Two isentropic and two isothermal processes.(3) Two isentropic and two constant pressure processes.											
	(3)	Two isentropic and two constan	t pres	sure p	rocesses.							
	(4) Two isentropic and two constant volume processes.											
 82.	and	team power plants, the pump hand the turbine handles vapor whose varied in the work in the	olume	is ma	ny times large							
	(1)	many times larger than	-	-	y times smalle	or than						
	(3)	equal to	(4)		of these	a dian						
 83.		The isentropic efficiency of a compressor is defined as the ratio of the isentropic compressor work to										
	(1)											
	(3) actual compressor work (4) isentropic compressor work											
84.	The change of entropy of closed system :											
	(1)	is same for every process betwee		-								
	(2)	is not same for every process bet	ween	two s _j	pecified states							
	(3) is same only for isothermal process between two specified states											
	(4)	is the same only for reversible pr	ocess									
85.	Ran	kine cycle efficiency of good stean	n powe	er plar	nt may be in t	he range	of :					
	(1)	10% to 15% (2) 35% to 45	5%	(3)	70% to 80%	(4)	90% to 95%					
86.	Steam is the most common working fluid used in vapor power cycles because of its											
	(1)	availability	(2)	low	cost							
	(3)	high enthalpy of vaporization	(4)	all o	f above							
87.	The ratio of brake power output to the fuel energy input per unit time is called:											
	(1)	Volumetric efficiency	(2)	Ther	mal efficiency	7						
	(3)	Mechanical efficiency	(4)	Rela	tive efficiency							
88.	Fou	r internally reversible processes lik	e:	-								
	1 - 2	2 isentropic compression										
	2 - 3	3 constant volume heat addition										
	3 - 4	1 isentropic expansion										
	4 - 1	l constant volume heat rejection										
	This	s ideal cycle is called cy	cle.									
	(1)	Diesel (2) Dual		(3)	Otto	(4)	None of these					
_												

89.	acce	artificial satellite leration due to gr llite is							
	(1)	4000 kg	(2)	400 N		(3)	400 kg	(4)	450 kg
90.	rese	s impossible for rvoir and produce ement expressed	a ne	et amount of					
	(1)	Kelvin Plank	(2)	Clausis		(3)	Rankine	(4)	Otto
91.		eciprocating engir d center is called		e ratio of vo	olume	at bo	ttom dead cente	r to th	e volume at top
	(1)	efficiency ratio			(2)	com	pression ratio		
	(3)	failure ratio			(4)	dem	and ratio		
92.	The	rmal efficiency of	close	d cycle gas t	turbin	— e plar	nt is increased by	· :	
	(1)	reheating	(2)	intercoolir	ng	(3)	regenerator	(4)	all of above
93.	Whi	ich of the followin	g is r	not positive	——— displa	ceme	nt compressor ?		
	(1)	Roots blower	-	_	(2)	Reci	procating comp	ressor	
	(3)	Vane blower			(4)	Cen	trifugal compres	sor	
94.	Zero	oth law of thermo	dyna	mics defines	s :				
	(1)	Internal energy	(2)	Enthalpy		(3)	Temperature	(4)	Pressure
95.	The	work input to the	air c	ompressor i	s min	imum	if compression	law fol	lowed is:
	(1)	Isentropic PV ^γ ≈	=C		(2)	Isotl	hermal PV = C		
	(3)	$PV^{1.2} = C$			(4)	PV ¹	$^{.35}$ = C		
96.	In a	three-way cataly	tic co	nverter, the	first	conve	rter controls :		
	(1)	НС	(2)	СО		(3)	NO _x	(4)	All the above
97.	Med	chanical efficiency	of ar	automobile	e engi	ne us	ually varies in th	e rang	e :
	(1)	50-60%			(2)	60-	70%		
	(3)	70-90%			(4)	mor	e than 90%		
							 -		

98. Unburned hydrocarbons from propane are easier to oxidize in oxidation catalysis than methane, which result in :

16

- (1) low nitrogenoxide emission
- (2) high carbon monoxide emissions
- (3) low unburned hydrocarbon emissions
- (4) high carbon dioxide emissions
- **99.** EGR system recirculates a small metered amount of the inert exhaust gas back into the intake manifold:
 - (1) To reduce the combustion temperature and lower the formation of N_2 .
 - (2) To reduce peak combustion temperature and lower the formation of NO.
 - (3) To increase peak combustion temperature and lower the formation of NO.
 - (4) To reduce the exhaust gas temperature and lower the formation of particulate matter.
- 100. The functions of a fuel injection system in diesel engines are :
 - (1) To filter the fuel and measure the correct quantity of fuel to be injected.
 - (2) To control the rate of fuel injection and time the fuel injection correctly.
 - (3) To atomise the fuel into fine particles for complete combustion and properly distribute the fuel in the combustion chamber.
 - (4) All of these.
- 101. The spark occurs when the:
 - (1) contact breaker points close
 - (2) contact breaker points open
 - (3) ignition switch is on
 - (4) none of the above
- **102.** The thermal efficiency of an air standard diesel cycle having fixed compression ratio, with increase in cut-off will:
 - (1) increase

(2) decrease

(3) independent

- (4) none of the above
- 103. The stoichiometric ratio of methane is higher than gasoline or diesel fuel because:
 - (1) methane has a lower percentage of hydrogen
 - (2) methane has a higher percentage of carbon
 - (3) methane easily mixed with air
 - (4) methane has higher percentage of hydrogen

10 4 .	Octane number of Indian lead-free petrol is:											
104.	(1)	•										
	(2) equal to octane number of leaded petrol											
	(3)	greater than octane number of	leaded	petrol								
	(4)	not specified										
105.	Red	uction of formation of pollutants	is achie	eved by :								
	(1) Reducing evaporative emissions											
	(2)	Re-designing the engine										
	(3)	Closed crankcase ventilation										
	(4)	All of these										
106.	The	number of main bearings in a 4-o	cylinder	car engine is u	sually:							
	(1)	2 (2) 3		(3) 4	(4) 6							
107.	The vibration damper on a crankshaft reduces the :											
	(1) Longitudinal vibrations (2) transverse vibrations											
	(3)	torsional vibrations	(4)	all of these								
 108.	An indication of auto-ignition quality of a diesel fuel is given by :											
	(1)	octane number	(2)	detonation	-							
	(3)	preignition	(4)	cetane number	•							
109.	Valve overlap is the number of degrees of crankshaft rotation during which:											
	(1) both intake and exhaust valve are closed.											
	(2)	both intake and exhaust valve	are ope	n.								
	(3)	the valves are moving from full	ly closed	d to the timing p	oint.							
	(4)	•										
110.	The	The 'dwell' is:										
	(1) the time for which the points remain closed											
	(2)	the distance between the cam l	obes									
	(3)	the angle at which the heat con	ntacts th	ne cam								
	(4)	none of the above										
111.	Clas	s-B push-pull amplifiers have fol	 llowing	type of promine	ent distortion :							
	(1) Electromagnetic distortion (2) Capacitive distortion											
	(*)	_ · - · - · O · · · · · ·	` '	cupacitave ais								

112.	Dio	Diode is an unilateral circuit element because :										
114,	(1)	it can conduc	ct curren	ıt im both di	rectio	ns.						
	(2)	it conducts co	urrent o	nly in one d	irectio	on.						
	(3)	it is unsymm	etrical in	n Fabrication	n.							
	(4)	its power rat	ing is to	o low.								
		1 (1		1.11 1				- C DIT				
113.	(1)	two ends of the saturation and			n on ((2)	-	t cnaracteristics operating poin		aetermine :			
	(3)	the amplifica		.1	(2) (4)		e of the above	L				
_	(2)				(4)	11011	e of the above					
114.		UJT can be used as relaxation oscillator characteristic curve.					of its	in th	ne static emitter			
	(1)	cut-off region	ı		(2)	satu	ration region					
	(3)	positive resis	tance re	gion	(4)	nega	ative resistance	region				
115	— The	The ratio of base-1 resistance to the interbase resistance (RBI/RBB) is :										
110.		(1) known as intrinsic standoff ratio, and it is less than 1.										
	(2) known as intrinsic standoff ratio, and it is more than 1.											
	(3)	known as ext										
	(4)	known as ext										
116.	Zen	er diodes are u	sed in :									
	(1)	amplifiers	(2)	choppers		(3)	regulators	(4)	oscillators			
117.	Whi	ich of the follo	 wing int	errupt has t	he hig	ghest 1	oriority in 8085	?	 -			
	(1)	INTR	(2)	TRAP	•	(3)	· -	(4)	RST 5.5			
110		mitter and call		minals of B	IT ore		whon and har m	intales th	ne amplification			
110.		or β in this mod			ji ait	HILCI	changed by m	istake, ti	ne ampinication			
	(1)	equal to β in			(2)	high	er than β in th	ie norma	ıl mode			
	(3)	lower than β			` '	zero	•					
			1:6:									
119.		nmon-collector	•	ers are main								
	(1)	voltage ampl			(2)	buff						
	(3)	low input im	.peaance	e circuits	(4)	an c	of the above					
120.	The	relationship ar	nong in	struction cyc	le (IC	C), fetc	h cycle (FC) ar	nd execu	te cycle (EC) is :			
	(1)	IC = FC - EC	_	-	`	•			EC = IC + FC			

विभाग - 'ब'

- 121. Reciprocating pumps are most suited where:
 - (1) High head are required on mains despite fluctuation in discharge
 - (2) Operating speeds are much high
 - (3) Constant supplies are required of large quantity
 - (4) None of above
- 122. A draft tube converts:
 - (1) Pressure energy into kinetic energy
 - (2) Velocity head into potential head
 - (3) Potential head into pressure head
 - (4) Kinetic energy into pressure energy
- **123.** In a hydraulic crane, if there are "n" number of pully in each pully block, then the velocity ratio will be:
 - (1) n
- (2) 2n
- (3) $\frac{n}{2}$
- (4) None of above
- 124. The value of flow ratio in case of francis turbine varies from :
 - (1) 0.1 to 0.14
- (2) 0.15 to 0.30
- (3) 0.35 to 0.5
- (4) 0.6 to 0.9

- **125.** The specific speed of centrifugal pump is:
 - $(1) \qquad \frac{N\sqrt{Q}}{H}$
- $(2) \quad \frac{N\sqrt{H}}{Q}$
- $(3) \qquad \frac{N(H)^{\frac{3}{4}}}{\sqrt{Q}}$
- (4) None of above
- 126. For the maximum efficiency for the series of curved vanes, the velocity of vane is:
 - (1) equal to the jet velocity
- (2) 75% of the jet velocity
- (3) 50% of the jet velocity
- (4) 33% of the jet velocity

- 127. In a pump there is:
 - (1) accelerating flow
- (2) decelerated flow

(3) either of above

(4) none of the above

128.	If sp	pecific speed of	turbine	is 6, then tl	n the turbine should be :								
	(1)	Francis	(2)	Kaplan		(3)	Pelton wheel	(4)	Thomson				
 129.				,	ing Hydraulic device is analogous to that of flyw storage battery.								
	(1)	Hydraulic ra	ım		(2)	Нус	lraulic accumula	tor					
	(3)	Hydraulic ir	tensifier		(4)	Con	nbination of all a	bove					
130.	Sole	enoid valve is a	valve of	:									
	(1)	pressure con	trol valve	2	(2)	đire	ction control val	ve					
	(3)	flow control	valve		(4)	non	e of above						
 131.	Gen	erator, absorb	er are cor	nponent of	f refrig	eratio	n system :						
	(1)	Vapour com	pression		(2)	Stea	m jet						
	(3)	Gas refrigera	ation		(4)	Vap	our absorption						
132.	Wet	Wet bulb temperature is non property. However it is equal to property. The property is:											
	(1)	Specific hum	udity		(2)	Adi	abatic saturation	tempe	erature				
	(3)	Relative hun	nidity		(4)	Entl	nalpy deviations						
133.	Rela	ntive humidity	φ is ratio	of:									
	(1)	mass of water	er vapoui	to mass o	f mixt	ure							
	(2)	mass of air t	o mass of	mixture a	t same	DBT							
	(3)	mass of wate	r vapour	to max pos	ssible 1	mass c	of water vapour is	n mixtı	ıre at same DBT				
	(4)	none of abov	ve										
134.	Idea	al refrigerant sl	hould no	t have :		<u>. – </u>			_				
	(1)	positive pres	sure in e	vaporator									
	(2)	high latent h	eat of va	porisation									
	(3) high thermal conductivity												
	(4)	high boiling	temperat	ure at atm	osphei	ric pre	essure						
•		_					 						

		frigeration system comp ne following statement :		e assem	iblea, e	vacuated and	a chargeo	by K ₁₃₄₉ . Which
	(1)	Thermal capacity of h		and re	frigera	ting machin	e will be	same.
	(2)	Thermal capacity of r	• •		_	C		
	(3)	Heat pump will have	•	•		Ü		
	(4)	Thermal capacity rela	O				, 0	
136.	Halo	ocarbon compound des	ignated as	R-22 (Refrige	erant) has ch	emical fo	ormula :
	(1)	•	CCL ₃ F	·	•	CHCLF ₂		
 137.	Don	nestic Refrigerator are s	pecified b	y :		_		
	(1)	cool space volume		(2)	heat	transfer rate	alone	
	(3)	color of front panel		(4)	none	of the above	e	
138.	Air	conditioning is simulta	neous con	trol of :				
	(1)	DBT, relative humidi	ty, air puri	ity and	motion	n		
	(2)	DBT, air purity						
	\ -/							
	(3)	Only DBT						
	, ,	Only DBT DBT and humidity						
139.	(3) (4)	•	nditioning	applica	ntion, r	ecirculation	air perce	ntage will be :
 139.	(3) (4)	DBT and humidity	nditioning 50%	applica	ntion, r	ecirculation ze r o%	air perce: (4)	ntage will be :
	(3) (4) In o (1)	DBT and humidity operation theater air cor	50%		(3)	zero%	(4)	80%
	(3) (4) In o (1)	DBT and humidity operation theater air cor 20% (2)	50%		(3) s	zero%	(4) put energ	80%
	(3) (4) In o (1) Vap	DBT and humidity operation theater air cor 20% (2) oour absorption refriger	50% ation syste	em use	(3) s wate:	zero%as in	(4) put energ	80% y.
140.	(3) (4) In o (1) Vap (1) (3)	DBT and humidity operation theater air cor 20% (2) our absorption refriger electricity only	50% ation system y ce of event	em use (2) (4) ts and r	(3) s wate: non c	zero% as ingrenergy onless of men,	(4) put energy	80% .y. only
140.	(3) (4) In o (1) Vap (1) (3)	DBT and humidity operation theater air cor 20% (2) oour absorption refriger electricity only low grade heat energ	50% ation system y ce of event	em use (2) (4) ts and r	(3) s water non o	zero% as ingrenergy onless of men,	put energy of material	80% .y. only
140.	(3) (4) In o (1) Vap (1) (3) In o is be	DBT and humidity operation theater air cor 20% (2) our absorption refriger electricity only low grade heat energ order to indicate sequenceing accomplished, the	50% ation system y ce of event	em use: (2) (4) ts and r	(3) s water non or movem que use Flow	zero% as ingrenergy onless of mended is:	(4) put energy energy of	80% only , etc., while work
140.	(3) (4) In o (1) Vap (1) (3) In o is be (1)	DBT and humidity operation theater air cor 20% (2) our absorption refriger electricity only low grade heat energy order to indicate sequenceing accomplished, the Flow diagram	ation systems y ce of eventrecording	em use: (2) (4) ts and r technic (2) (4)	(3) water non or movem que use Flow Two	as ingrenergy onleadis: process challended process	(4) put energy energy of	80% only , etc., while work
140.	(3) (4) In o (1) Vap (1) (3) In o is be (1)	DBT and humidity operation theater air cor 20% (2) oour absorption refriger electricity only low grade heat energ order to indicate sequenceing accomplished, the Flow diagram Gang process chart	ation systems y ce of eventrecording	em use: (2) (4) ts and r technic (2) (4)	(3) s water non or movem que use Flow Two	as ingrenergy onleadis: process challended process	(4) put energy energy of	80% only , etc., while work

143.	Whi	ch of the following is t	he measure	e of dis	spersion ?	
	(1)	Median		(2)	Range and standard deviation	
	(3)	Mode		(4)	Arithmetic mean	
 144.	Whi	ich of the following cor	ntrol chart i	is used	l for controlling number of defects per pi	ece ?
	(1)	R chart (2)	P chart		(3) C chart (4) U chart	
145.	Gan	tt chart provides infor	mation abo	out :		
	(1)	Material Flow		(2)	Production Schedule	
	(3)	Resource Planning		(<u>4.</u>)	None of above	
146.					roduce a record of an existing set of condi king place is made as simple as possible.	tions
	(1)	Flow diagram		(2)	String diagram	
	(3)	Operation process ch	nart	(4)	None of above	
147.	Dur	ing limit gauging for a	cceptance	of proc	duct :	
	(1)	No Go plug gauge sh	_	_		
	(2)	No Go ring gauge sh	ould not pa	ass ove	er solid	
	(3)	Both	_			
	(4)	None				
148.	Stan	dards to be used for r	eference p	urposes	es in laboratories and workshops are refe	erred
	(1)	Primary standards		(2)	Secondary standards	
	(3)	Tertiary standards		(4)	Working standards	
149.	The	surface roughness on	a drawing	is repre	resented by :	
	(1)	Circles		(2)	Squares	
	(3)	Curves		(4)	Inverted triangles	
150 .	Vari	ation traced in produc	t because c	of error	r in setting jigs and fixture are treated as	;
	(1)	Assignable cause		(2)	Chance cause	
	(3)	None of above		(4)	Can be treated in any category	

विभाग - 'क'

151.	A ty	pical overdriv	e gear ra	atio is		<u>.</u>			
	(1)	0.8:1	(2)	1:1		(3)	1.5 : 1	(4)	3.5:1
152.	Whi	ich of the follow	wing is n	ot used as	materi	ial for	automotive f	rames ?	
	(1)	carbon steel	(2)	cast iron		(3)	alloy steel	(4)	aluminium
153.	The	purpose of tra	nsmissio	n in an aut	to m obi	le is :			
	(1)	to vary the s	peed of a	nutomobile					
	(2)	to vary the to	orque at	the road w	heels				
	(3)	to vary the p	ropulsio	n power of	auton	nobile			
	(4)	All of the abo	ove						
154.	Des	ired slip rate ir	ı case of	ABS of a re	oad vel	hicle i	s:		
	(1)	0%	(2)	10 - 30%		(3)	100%	(4)	80 - 90%
155.	Whi	ich of the follo	wing sha	ıll have miı	nimum	ı air d	rag coefficien	t ?	
	(1)	saloon car			(2)	artic	culated truck		
	(3)	light van			(4)	buse	es and coache	es	
156.	The	purpose of tyr	e plies is	to:					
	(1)	increase trea	d life		(2)	deci	rease noise lev	el el	
	(3)	provide softe	er ride		(4)	incr	ease traction		
157.		n automotive l help of :	brake sy:	stem, balan	ice bet	ween	front and rea	r braking	is ensured with
	(1)	master cylin	der		(2)	pro	portioning val	lve	
	(3)	metering val	ve		(4)	diff	erential switcl	h	
									

R	O	9
1.	u	,,

	(1)	front only			(2)	rear	only		
	(3)	front as well	as rear		(4)	eithe	er (1) or (2)		
159.	A ty	re is designate	d as P 20	05/65 R12.	Aspe	ct ratio	o of this tyre is	:	
	(1)	205	(2)	100		(3)	65	(4)	12
160.	Follo	owing is the da	ta for tra	ansmission	syster	n of a	road vehicle.		
	Gea	rbox reduction	ratios :						
	1 st g	gear - 4.3 : 1							
	2 nd	gear - 3.00 : 1							
	3rd g	gear - 2.71 : 1							
	4 th §	gear - 1 : 1							
	Fina	al drive reduction	on is 5.0	: 1					
	The	overall reduction	on wher	the vehicle	e is dr	iven ir	1 2 nd gear is :		
	(1)	3.00:1	(2)	13.55 : 1		(3)	5:1	(4)	15:1
	()	2,00 . 2	(-)			(5)	3 / 1	(-)	
161.					ery sh				
 [61.	A fu	ılly charged 6 c			ery sh		ndicate :		
[61.		ılly charged 6 c	ell autor	motive batt	(2)	ould in	ndicate :		<u>, 1979</u>
	A fu (1) (3)	ılly charged 6 c	rell autor	motive batt 290 at 32°C	(2) (4)	ould in	ndicate : V		10000
	A fu (1) (3)	ılly charged 6 c 12 V Specific gravi	ell autority of 1.2	motive batt 290 at 32°C etween the	(2) (4)	ould in	ndicate : V		
	A fu (1) (3)	ally charged 6 c 12 V Specific gravi PCV valve is lo	ell autority of 1.2	motive batt 290 at 32°C etween the	(2) (4)	ould in	ndicate : V	(-) 	
	A fu (1) (3) The (1)	ally charged 6 c 12 V Specific gravi PCV valve is lo air cleaner ar	ell autority of 1.2 ocated boat the cand the in	motive batt 290 at 32°C etween the arburettor	(2) (4)	ould in	ndicate : V	(-) 	
	A fu (1) (3) The (1) (2)	ally charged 6 c 12 V Specific gravi PCV valve is lo air cleaner ar carburettor ar	ell autor ocated boad the cand the in	motive batt 290 at 32°C etween the arburettor ntake mani-	(2) (4)	ould in	ndicate : V		
162.	A fur (1) (3) The (1) (2) (3) (4)	ally charged 6 c 12 V Specific gravion PCV valve is locating air cleaner are carburettor are intake manifor	ell autority of 1.2 ocated bond the cand the inold and and and and and and and and and an	motive batt 290 at 32°C etween the arburettor ntake mani- air cleaner crankcase	(2) (4) :	ould in 12.6 Both	ndicate : V (2) and (3)		

25

	In c	case of an automobile ba	ttery, following	are the reasons which	will cause a defect of
	(a)	———- Very high charging ra	te		
	(b)	High specific gravity of	of electrolyte		
	(c)	Freezing of electrolyte			
	(d)	lmproper level of elect	trolyte		
	(e)	Mechanical damage d	ue to rough han	dling or not fixed in th	e vehicle
	Ans	swer options :			
	(1)	Loss of water			
	(2)	Deterioration of plates	5		
	(3)	Corrosion of terminals	s and clamps		
	(4)	Internal short circuitir	ng		
165.	A cl	hassis dynamometer me	asures the vehic	e power at the :	
	(1)	engine crankshaft	(2)	transmission shaft	
	(3)	wheels	(4)	none of these	
	Δho	out how much percenta	go of boot oper		
166.		tion ?	ige of fleat effer	gy equivalent is lost i	n overcoming engine
166.		-	•	-	0 0
	frict	tion?	20% - 30%	-	0 0
	frict	tion ? 30% - 40% (2)	20% - 30%	-	0 0
	frict (1) Clut	tion ? 30% - 40% (2) tch dragging is noticeab	20% - 30% le :	(3) 15% - 25%	0 0
167.	(1) Clut (1) (3) App	tion? 30% - 40% (2) tch dragging is noticeable when shifting gears	20% - 30% le : (2) (4)	(3) 15% - 25% during acceleration at low speed	(4) 5% - 10%
167.	(1) Clut (1) (3) App	tion? 30% - 40% (2) tch dragging is noticeable when shifting gears at high speed	20% - 30% le : (2) (4)	(3) 15% - 25% during acceleration at low speed	(4) 5% - 10%
167.	Clut (1) (3) Approximately with	tion? 30% - 40% (2) tch dragging is noticeable when shifting gears at high speed proximate values of crarhin:	20% - 30% le : (2) (4) nkshaft run out a	(3) 15% - 25% during acceleration at low speed	(4) 5% - 10%
167. 168.	(1) Clut (1) (3) App with (1) (3)	tion? 30% - 40% (2) tch dragging is noticeable when shifting gears at high speed proximate values of crarhin: 0.03 mm, 0.3 mm	20% - 30% le: (2) (4) nkshaft run out a (2) (4)	during acceleration at low speed and wear limit of clute 0.3 mm, 3.0 mm 0.1 mm, 1.0 mm	(4) 5% - 10%
167. 168.	(1) Clut (1) (3) App with (1) (3)	tion? 30% - 40% (2) tch dragging is noticeable when shifting gears at high speed proximate values of crarhin: 0.03 mm, 0.3 mm 0.001 mm, 0.01 mm	20% - 30% le: (2) (4) nkshaft run out a (2) (4)	during acceleration at low speed and wear limit of clute 0.3 mm, 3.0 mm 0.1 mm, 1.0 mm	(4) 5% - 10%

Scuf	f wear is cause	d by:					
(1)	abrasive wea	r					
(2)	momentary v	velds at	TDC				
(3)	momentary v	velds at	BDC				
(4)	excessive oil	in the co	ombustion char	nber			
A re	U		sued in any pro	vince is	valid througho	ut India,	, and is valid for
(1)	9		5	(3)	15	(4)	20
	-	iod drivi	ing licence is di	isqualifie	ed to drive und	er the in	fluence of drink
(1)	6 months	(2)	24 months	(3)	12 months	(4)	18 months
					ssignment of n	ew regis	stration mark on
(1)	25, 52	(2)	27, 54	(3)	12, 24	(4)	30, 55
The	specified age of	of touris	t bus and good	s carria	ge is	years.	
(1)	5	(2)	9	(3)	15	(4)	20
Mot	or Vehicle Act	1988 ha	as	chapters	and	sched	dules.
(1)				_			18, 1
	•	~			-	for scho	ool buses owned
(1)	$\frac{2}{3}$ rd of annua	al tax ra	te applicable				
(2)	$\frac{1}{3}$ rd of annu	al tax ra	te applicable				
(3)	$\frac{1}{2}$ of annual	tax rate	applicable				
	(1) (2) (3) (4) A record (1) White remove (1) The (1) Accord (1) Accord (1) (2)	(1) abrasive weak (2) momentary weak (3) momentary weak (4) excessive oil A registration certify years. (1) 9 For how much perfor drugs? (1) 6 months Which form number removal of a motor of the specified age of the s	(2) momentary welds at (3) momentary welds at (4) excessive oil in the condition of the con	(1) abrasive wear (2) momentary welds at TDC (3) momentary welds at BDC (4) excessive oil in the combustion char A registration certificate issued in any proyears. (1) 9 (2) 5 For how much period driving licence is divordrugs? (1) 6 months (2) 24 months Which form number and rules are applicate removal of a motor vehicle of another state (1) 25, 52 (2) 27, 54 The specified age of tourist bus and good (1) 5 (2) 9 Motor Vehicle Act 1988 has (1) 20, 4 (2) 14, 2 According to Bombay Motor Vehicle Tax aby school authorities and used exclusively (1) $\frac{2}{3}$ rd of annual tax rate applicable (2) $\frac{1}{3}$ rd of annual tax rate applicable	(1) abrasive wear (2) momentary welds at TDC (3) momentary welds at BDC (4) excessive oil in the combustion chamber A registration certificate issued in any province is	(1) abrasive wear (2) momentary welds at TDC (3) momentary welds at BDC (4) excessive oil in the combustion chamber A registration certificate issued in any province is valid througho years. (1) 9 (2) 5 (3) 15 For how much period driving licence is disqualified to drive undor drugs? (1) 6 months (2) 24 months (3) 12 months Which form number and rules are applicable for assignment of memoval of a motor vehicle of another state? (1) 25, 52 (2) 27, 54 (3) 12, 24 The specified age of tourist bus and goods carriage is (1) 5 (2) 9 (3) 15 Motor Vehicle Act 1988 has chapters and (1) 20, 4 (2) 14, 2 (3) 22, 2 According to Bombay Motor Vehicle Tax Act 1958, tax exemption by school authorities and used exclusively as school buses is: (1) \frac{2}{3} \text{rd of annual tax rate applicable}	(1) abrasive wear (2) momentary welds at TDC (3) momentary welds at BDC (4) excessive oil in the combustion chamber A registration certificate issued in any province is valid throughout Indiayears. (1) 9 (2) 5 (3) 15 (4) For how much period driving licence is disqualified to drive under the in or drugs? (1) 6 months (2) 24 months (3) 12 months (4) Which form number and rules are applicable for assignment of new registermoval of a motor vehicle of another state? (1) 25, 52 (2) 27, 54 (3) 12, 24 (4) The specified age of tourist bus and goods carriage is years. (1) 5 (2) 9 (3) 15 (4) Motor Vehicle Act 1988 has chapters and scheel (1) 20, 4 (2) 14, 2 (3) 22, 2 (4) According to Bombay Motor Vehicle Tax Act 1958, tax exemption for scheby school authorities and used exclusively as school buses is: (1) \frac{2}{3} rd of annual tax rate applicable

	(1)	₹ 25,000	(2)	₹ 15,000		(3)	₹ 75,000	(4)	₹ 80,000
178.	Whi	ch of the follow	ing typ	es of insura	nces i	s mar	datory ?		
	(1)	Motor own da	amage		(2)	Mot	or third party	legal lial	oility
	(3)	Dames 1i	1		(4)	D		•	
<u> </u>	Bhai	Personal accional acc	valent t	o Euro II) no			essional liabil ————— and commerc		es were enforc
 179.	Bhai	rat Stage II (equi	valent t	o Euro II) no		or cars			es were enforc
 179.	Bhai in th	rat Stage II (equi ne entire count	valent t	o Euro II) no	orms fo	or cars	and commerc		es were enforc
_	Bhain th (1) (3)	rat Stage II (equi ne entire count August 1, 200	valent t ry on 05	o Euro II) no	(2) (4) tyre a	Apr Apr Apr	and commercial 1, 1988 il 1, 2005	rial vehicl	

- o 0 o -

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

सूचना -- (पृष्ठ 1 वरून पुढे...)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

The Catch varies inversely with the size of the:

(1) nozzle

droplet

(3) obstruction (4) sprayer

ह्मा प्रश्नाचे योग्य उत्तर ''(3) obstruction'' हे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल, आता खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ खालीलप्रमाणे पूर्णपणे छायांकित करून दाखिवणे आवश्यक आहे.

प्र. इत. 201. (1) (2) (4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ग्राकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK